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Abstract: This paper looks at the effects of a rotor's inertia and momentum and its interrelation 
with vibration diagnostics and rotor balancing, and the link between theory and practice. Of 
particular focus regarding both balancing and field diagnostics is the effect of distributed mass 
eccentricities of a continuous rotor, and associated bearing stability of rotor journals, and the 
operating orientation of the rotor body governed by momentum and inertia. These effects vary 
relative to rotor speed, with bearing-journal stability being gravity-governed in the sub-harmonic 
and trans-harmonic frequency regions, versus rotor behavior and stability governed by rotor 
inertia and momentum at super-critical and operating frequency regions, particularly rotor mass 
axis self-centering within bearing clearances. These effects also vary in proportion to applied 
load torque at constant speed. In field vibration diagnostics, the root cause of many apparent 
vibration problems is in the imposed constraints that counter the natural inertia-governed 
tendency of motion of the rotor, where bearings or adjacent coupled rotors restrict the rotor's 
natural operating orientation. Dynamic vibration problems and what appears as resonant 
excitation are in many cases only a consequence of unresolved static problems, such as rotor 
mass axis eccentricity or a bow. Shop balancing should focus on resolving and compensating 
mass axis eccentricity at speeds within the rotor fundamental harmonic resonance frequency 
range, using three correction planes, maintaining mass symmetry at any sub-critical or super-
critical frequency. 
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Introduction: 

In the area of vibration diagnostics and practical balancing of large turbines and generator rotors, 
diagnosticians and balancers alike focus almost exclusively on observing and recording relative 
“vibration displacements”, specifically the symptoms of dynamic motion from centrifugal forces, 
system resonant conditions, and various system dynamic parameters. However, the more 
fundamentally important, but mostly neglected root cause in diagnosing rotor vibration 
displacements is the lateral, pseudo-static stability of the rotor, as governed by its rotational 
inertia and momentum.  
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within the bearing clearance, shown as the shaft centerline (SCL) path, but while remaining tied 
to the journal centerline as being the center of rotation (stable in a Galilean transformation 
frame). While following the SCL path, upon reaching the first system critical speed peak at a 
phase angle of ~ 90°, the rotational momentum of the rotor becomes sufficiently large and begins 
to govern the natural stability orientation of the rotor, and likewise drives the rotor to self-center 
its rotation about its mean center-of-mass axis in "natural" motion. 

If there is minimal mass eccentricity in the rotor, meaning minimal distance and/or skew 
between the rotor's journal centerline and mean mass centerline, then no real change occurs in 
the "static" reference frame, relative to the rotor. Likewise, no dynamic radial response will be 
seen, and such a rotor will be “balanced” at any speed maintaining symmetry in any reference 
frame [12]. However, if mass eccentricity is measurable, then upon reaching the first system 
critical speed and above a phase angle of 90°, this static reference frame will be defined by the 
rotor's overall mass axis, while the journal centerline (or what was the initial "static" reference 
frame on the rotor) will now begin to whirl around it. This corresponds to the total 180° phase 
shift seen through the critical speed region, and represents the condition for speeds above this 
point.  

This process is more easily observed and visualized when considering a vertical rotor, without 
the effect of gravity holding journals in bearings. In a vertical rotor-bearing system with no 
bearing gravity loading, the effective combined system stiffness of the rotors plus bearings is 
zero, and therefore the system critical speed is zero. (The rotor of course still has its own inherent 
independent harmonic resonance frequency.) This means that immediately upon initiating 
rotation, the rotor will naturally rotate as a rigid body about its mean center of mass axis in what 
can be considered "natural" centroidal rotation, following the conservation of angular 
momentum. A horizontal rotor has the same innate tendency, but due to gravity pressing the 
journals into the bearings, it is held to rotate about its journal axis regardless of rotor body 
eccentricity until reaching the peak of the “first system critical speed”, gaining sufficient speed 
and rotational momentum to initiate this centroidal rotation about the mass axis, which can then 
be taken as the new "static" stability reference frame center about which displacement 
measurements are effectively read.  

Applied to rotor balancing on a high-speed shop balancing machine, it then becomes crucial to 
pay attention to what reference frame the vibration displacement readings are being measured 
against, and this comes down to recognizing the speed region, relative to the rotor-bearing 
system's first critical speed, or first system fundamental harmonic resonance frequency. 
Vibration displacement measurements taken at sub-harmonic speeds will indicate motion relative 
to the journal axis centerline. At super-harmonic speeds, displacement measurements are taken 
relative to the true mass centerline, but while also incorporating the rotor body's natural shift in 
shaft centerline position in “space” as affected by the rotor's momentum, which can alter the 
measured relative vibration displacement depending on the reference frame location that the 
center of rotation is tied to. 

With regard to rotor balancing on a balancing machine, a rotor being balanced at super-critical 
speeds will result in the balancing process balancing the rotor about its mass axis, with the 
journals free to adjust themselves to a position of unconstrained natural "static" stability. For 
instance, on a low-speed, soft-bearing balancing machine with low system stiffness, all balancing 
of displacement responses will be performed about and relative to the rotors mean mass axis. On 



a hard-bearing or high-speed machine, the same applies, but would be the case only at higher 
speeds above the corresponding system fundamental harmonic resonance frequency (1st critical), 
while balancing at sub-harmonic frequencies on such a machine would be performed about and 
relative to the rotor's journal axis. 

If applying traditional shop balancing methods on an eccentric rotor, a residual mass axis skew 
might still exist unresolved at full operating speed despite low measured shop vibration 
displacement and bearing seismic readings. In such cases, these low dynamic readings are often 
at the expense of improper SCL position or excessive shifting and SCL path hysteresis, which 
indicate the natural inertial self-alignment tendency governed by the rotor's mass axis from 
unresolved eccentricity. Reviewing SCL readings should be made an important part of any rotor 
balancing procedure, as it provides crucial indications of unresolved mass eccentricity that may 
create vibration problems once installed in the field. 

When installed and assembled in the field, a rotor will encounter physical constraints (such as 
being coupled to adjacent rotor mass), preventing its independent "natural" shaft centerline 
adjustment to its mass axis if there is any residual mass axis skew, and the rotor will be 
constrained to rotate about its journal axis. Any constraints against the natural inertial tendency 
of the rotor will create reaction forces, which are seen as measured vibration. Therefore, the full 
shop rotor balancing process should be performed primarily up to the first critical speed when 
still referenced to the journal axis, such that the balance condition achieved on the balancing 
machine matches the later forced operating orientation of the installed rotor.  

1. Terminology and Categorization: 

Since the intent of this paper is to bring together science and practical technology in the area of 
vibration diagnostics and balancing of large rotating machinery, it is necessary to broaden the 
standard vocabulary currently in use with some expanded definitions to add clarity to the later 
descriptions of rotor behavior.  

1.1 Unbalance and balancing: 

1.1.1 What is rotor “unbalance”? 

The initial assumptions are of dealing with a continuous, large, “rigid” or flexible rotor in null-
mode (its intrinsic shape at standstill), driven in circular motion by externally applied torque, 
with the rotor's longitudinal axis horizontally oriented perpendicular to gravity, and constrained 
at two flexible, fluid-film bearing supports. Rotor vibration in practice is most commonly 
attributed to "unbalance". However, the notion of "unbalance" of continuous rotors is usually not 
simply the effect of centrifugal force from a radially asymmetric lumped mass excess or 
deficiency in a single random radial plane, but rather is usually in the form of axially distributed 
mass axis eccentricities or runouts between supports (gravity constraints), such as a shaft bow. 
This causes the real longitudinal center-of-mass axis of the rotor (its true centroidal axis) to not 
be coincident with its geometrically-centered, forced axis of rotation, defined as the axis 
connecting the journal centers.  

Due to the rotor journals being held and constrained in the bearings by gravity, the rotor mass 
axis is forced to precess about this journal axis (the orthogonal Z-axis, if a radial plane is taken 



as X-Y). Gravity prevents the forward momentum gained from drive torque from bringing the 
rotor to spin in its natural centroidal circular motion, as it otherwise would if unconstrained or 
unaffected by gravity. 

To better define rotor “unbalance”, a rotor can be conceptually divided into fundamental 
harmonic modal elements corresponding to the segments of the rotor that remain "rigid" during 
modal deflection of a flexible rotor. The minimum number of nodes of these modal elements fits 
the formula 2N+1, where N is the number of the mode. For the first mode, this corresponds to 
two elements, each comprising one half of the rotor, meeting at the plane of the total rotor's axial 
center of mass (COM), and thereby having 3 node points. When mass axis of a continuous rotor 
is radially offset and skewed between constraints, the infinite number of axially distributed radial 
mass eccentricities can be reduced to only three equivalent particle point masses, at the total 
rotor COM and at the two COMs of the two modal elements of the rotor’s fundamental harmonic 
resonance frequency mode. These three simultaneous distributed COMs are the absolute 
minimum number of locations for the effective simultaneous superposition of all mass 
unbalances or eccentricities on a flexible rotor, for the purpose of calculating or modeling the 
solution to unbalance or eccentricity. This concept of modal elements becomes particularly 
relevant for the optimal practical balancing method for flexible, eccentric or bowed rotors. 

Rotor “unbalance” is therefore a state when a longitudinal line which intersects the COM of the 
whole rotor and centers of masses of the fundamental harmonic mode modal elements (this line 
defines the rotor’s centroidal mass axis), is radially offset and not coincident with its 
geometrically-centered, forced axis of rotation, defined as the axis connecting the journal centers 
(the non-centroidal axis).  

1.1.2 What is rotor “balancing”? 

In order to avoid any amplified response at the “1st system critical”, the balancing of large 
turbine and generator rotors in horizontal machines should be the process of “aligning” the 
rotor’s net principal inertia axis (the rotor's “rigid body” mass axis between its bearing 
constraints in a state of rest), to coincide with the rotor’s gravity-constrained axis of rotation 
(journal axis) in any reference frame, independent of spatial orientation or rotation velocity or 
acceleration. Superimposing all unbalance/eccentricity into a single equivalent total at a point at 
the total rotor COM (as is commonly done in rotor modeling and for standard balancing 
methods) is not a correct approach when dealing with eccentric flexible rotors. True mechanical 
rotor “balancing” to achieve a balanced (or better stated "aligned and compensated") condition 
should be generally done on balancing machines, by placement of correction weights 
proportionally axially distributed simultaneously in a minimum of three axially predetermined 
balancing planes to compensate the effect of centrifugal forces from these internal three 
concentrated COMs. 

The sum of radial forces and axial moments produced by the added weights should create a 
virtual dynamic mass axis that should as close as possible mirror the eccentricity of the inherent 
mass axis at any speed, or to at least within the allowable eccentricity per the standards given in 
ISO 1940-1 [1]. The geometric sum of the intrinsic mass axis and the "virtual" mass axis created 
by the balance weights should ideally result in a vanishing of synchronous cyclic reaction forces 
and displacements at the points of constraint (journals) of the rotor, and rotor will be balanced at 
any speed in any reference frame.  



1.2. Dynamic - Orbital motion: 

A rotor as a continuous body in a rotor-bearing system is utilized as device to transfer circular 
rotating motion to work, as an open system with continuous energy input (in the form of applied 
torque). There are several types of rotating motions in different reference frames that a rotor 
exhibits through its full speed range, with distinct rotor behavior within various operating speed 
regions. These speed regions include accelerating from the state of rest through sub-harmonic 
speeds to the beginning of the first system fundamental harmonic speed range (first system 
critical speed range), specifically passing through the first system fundamental harmonic speed 
range (trans-harmonic), and from the start of super-harmonic speeds to design operating speed 
frequency. 

1.2.1 Spin:  

Spin is a purely synchronous circular motion of the continuous rotor mass initiated by external 
force (applied torque) about the rotor's neutral axis, generally corresponding to the rotor journal 
axis. All internal particle masses of the rotor, in each infinitesimal axial “slice” of a continuous 
rotor, are orbiting synchronously at constant radial distance around the neutral axis. Only with a 
perfectly concentric rotor would spin be the only observed motion, and would be maintained 
without any further net effect on rotor internal mass from external forces. In pure spin, with the 
rotor unconstrained, the momentum, angular momentum and energy would be conserved.  

In general practice, rotor spin is maintained about the neutral axis of applied torque, but is also 
combined with other modes of rotation (orbital translation, precession). The journals (rotating 
and gravity-constrained in oil lubricated bearings) link rotation and translation of the mass axis, 
establishing a statically stable equilibrium within span L between support constraints.  

1.2.2 Synchronous lateral orbital translation of mass axis (or precession):  

Lateral orbital translation (or shaft orbit) is the circular (but not necessarily rotating) path in 
space generally synchronous to each revolution. At sub-harmonic speeds, this correlates to the 
motion of the mass axis of the rotor translating (precessing) [6, 10] internally within the rotor 
about the journal axis, if one were to trace out its path in space. In the fundamental system 
harmonic speed range, this path of the mass axis will grow in radius and change shape as the 
rotor is accelerated, up to ~ 90 degrees relative phase angle, as the rotor bends and deflects from 
reactive centrifugal force. The center of translation corresponds to the inertial reference frame, or 
static stability axis, or Z–axis of a continuous rotor. Up to the center frequency of the first system 
critical speed range, applied torque drives "spin" about the neutral axis, while simultaneously 
centrifugal force drives lateral orbital translation of the mass axis about this neutral spin axis.  

1.2.3 Synchronous whirl: 

Above the first system critical speed region, the mass axis has inertially self-centered in space 
and it is in pseudo-static equilibrium between two bearings. Synchronous whirl is a rotating 
motion in at super-harmonic frequencies at which the rotor journal neutral axis (about which 
torque is still applied, and about which rotor spin is centered) orbits about the rotor mass axis. 
This whirl applies to the neutral axis of each modal element, while the shared inner node is 
pinned at the rotor COM. On rotors behaving as rigid, this motion incorporates a conical 
"pivoting" of the journals and the rotor neutral axis about the rotor's COM, with reaction forces 
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1.3.2. From initial phase shift to phase angle of ~90 degrees of the 1st system critical speed: 
 
When a rotor is accelerated (adding energy to the system) from the beginning of the 1st critical 
speed range and from ~10° through ~90° response phase angle shift, the rotor's tendency is to 
revert to a natural rotation centered around its mass axis. However, it is prevented to do so, being 
held by gravity in its bearings, with its lateral moment of inertia being larger than forward 
momentum generated by torque. Therefore below 90° phase, the forces from increasing 
momentum that would otherwise "flip" the rotor to rotate about its mean mass axis are instead 
transferred into the forced deflecting of the rotor, as these reactive centrifugal forces in the rotor 
body continue to react against the imposed constraints at the journals. Some of the added energy 
used to accelerate the rotor from this point is now instead stored in deflecting the rotor "spring" 
in the form of potential energy as it bends under increasing reactive centrifugal forces. This 
condition persists up to the peak of the center frequency of the system fundamental harmonic 
resonance frequency range and at ~90 degrees phase shift. The centrifugal force from any net-
eccentric mass (best observed in a rotating reference frame, oriented by the instantaneous 
location of the net-eccentric mass) is converted into bending deflection of the flexible rotor 
"spring", as the entire rotor body laterally translates (orbits) about the journal axis. For very rigid 
rotors on flexible supports, the transition from 0° to 180° phase is done practically 
instantaneously. [6]  

1.3.3. At ~ 90 degrees of phase angle, and up to 180 degrees: 

As a flexible rotor is further accelerated (energy added to the system), upon reaching a phase 
angle of ~ 90°, the force vectors resisting the rotor from achieving centroidal rotation [6], and the 
forward momentum are equal in magnitude, and with further sufficient torque to pass this point, 
the rotor reverts to its "natural rotation", where the axis of rotation (or rotor neutral axis, or axis 
of spin, about which torque is applied) begins to itself laterally translate around the rotors mean 
longitudinal mass axis. This can be pictured as the spinning journal centers whirling 
synchronously around the mass axis. The mass axis now takes the position of becoming the 
inertial reference frame or "static" stability reference axis, and the overall axial center of mass of 
the rotor further becomes an inertial constraint in "space" (about which the rotor now pivots) [4], 
as much as bearing clearances allow. (If drive power is insufficient and unable to generate 
enough acceleration torque, the rotor can get “stuck” at 90° phase, with amplitude increasing 
rapidly and risking destruction of the machine).  

It should be noted that this behavior applies particularly on a balancing machine with both rotor 
ends unconstrained. In the field, although this behavior tendency still exists, the added 
constraints of bearings or adjacent coupled rotors may force the rotation to remain centered about 
the journal axis, or to only partially achieve this "natural" motion, in which case the constraint to 
the natural motion will generate high potential energy forces (cyclic stress) upon the supports, 
and will manifest as "high vibration", generally in the form of bearing seismic vibration, though 
it can also induce associated kinetic whirling in other unconstrained locations.  

As the relative phase angle between the centrifugal force (best recognized in a rotating reference 
frame, being tied to the net-eccentric mass of the rotating rotor; i.e. the "heavy spot") and the 
rotor deflection (observed in an inertial reference frame by sensors at the bearings; i.e. the "high 
spot") becomes greater than 90 degrees, the rotor is accelerated both by the additional torque and 
in part from the conversion of the potential "spring" energy stored from accelerating the rotor 



from 0° to ~ 90° phase being converted to kinetic energy as the "spring" deflection releases. This 
release progresses over the remainder of the phase shift from ~90° to 180°, in accordance with 
the conservation of angular momentum as the radius of the translational orbit decreases.  

1.3.4. Above the 1st critical speed and 180 degrees of phase shift, and up to operating speed 
above the 1st critical speed frequency, or super-harmonic frequency range in an inertia-
governed environment: 

At a phase angle of 180°, the rotor reaches a self-regulated motion between centrifugal forces 
from any "residual eccentricities" and the residual lateral translation of the rotor journals, i.e. 
synchronous whirling around the rotor's mass axis (which is now the inertial reference frame or 
Z-axis in "space"). At this speed, the residual measured displacement amplitudes at the journals 
indicate the residual mass axis eccentricity of the modal elements of the fundamental harmonic 
resonance frequency. 

“Vibration displacement” is now referenced as the magnitude of radial displacement of the 
journals synchronously whirling about the SCL. Each of the two first-mode modal elements is 
inertially constrained at the COM on one end (the rotor midplane), and elastically connected at 
the respective bearing supports. The "static" stability orientation of the rotor is now inertially 
governed relative to the rotor mass axis and controlled by momentum generated from mass 
eccentricities, with the mass axis self-centered, as far as bearing clearances and seal clearances 
allow for unconstrained whirling of the journals. The rotor mass axis is now the corresponding 
Z-axis of the non-rotating X-Y inertial coordinate reference frame, as seen in the SCL, 
representing rotor static stability in “space”. Residual unresolved eccentricity in each respective 
modal element that is axially asymmetric to the full rotor COM creates an axial moment about 
the total rotor COM inertial constraint (a node point), driving its "rocking mode" or whirling of 
each journal, with the rotor ends out of phase to each other. Each first-mode model element 
(rotor half) acts as a cantilever constrained at the rotor COM and respective journal, and if 
excited at higher speeds, each rotor half or modal element individually progresses through its 
own self-similar process of a “first critical”, out of phase to each other. This is the typical 
behavior behind what is commonly referred to as "second-critical" vibration displacement.  

During further rotor acceleration to operating speed, any residual mass eccentricities present will 
result in sectional synchronous "whirling", due to axial moments from the unresolved 
eccentricities and applied torque, proportional to the magnitude of the energy added to the 
system as an increase in speed or the system load (torque). If at the same time any rubbing 
occurs between the rotor and case or stator, other higher harmonic frequency responses may be 
seen in frequency spectrum data plots.  

The appearance of any sub-synchronous or super-synchronous frequencies in orbital motion 
indicates the existence of additional external forces acting on the rotor. These external forces 
cause subtle cyclic variation of angular velocity evident as a net pulsating torque, which is 
superimposed upon the basic torque necessary to overcome the total rotor inertia in rotation. This 
superimposed supplemental "pulsating" torque could excite a response at the rotor's internal 
natural fundamental harmonic resonance when the rotor itself is at a speed above twice the 
frequency of the rotor’s fundamental harmonic resonance frequency in free space, destabilizing 
the static equilibrium of the system. [7, 8]  



In summary, the states and reference frames of a rotor as it is accelerated from a state of rest 
through the system fundamental harmonic resonance frequency and to operating speed are 
presented in Figures 3a, b, c, d and e.  

 

Figure 3a. Concentric rotor. Figure 3b. Mass axis precessing.  Figure 3c. Journal axis whirling 

 

Figure 3d. Flexible rotor mass axis precessing.  Figure 3e. Flexible rotor with journals pivoting. 

1.4. Hysteresis in shaft centerline path: 

When rotor mass axis eccentricities exceed the allowable limit per ISO 1940-1 [1], hysteresis 
will usually appear in the indicated SCL path, between the path of the rotor while accelerating 
under drive torque rolling up, and the path when decelerating, rolling down by inertia without 
drive torque [13]. This is observable both when a rotor is spun solo in a balancing facility, or 
when operating coupled to other rotors in an operating machine. It can also be seen proportional 
to increasing/decreasing load torque at constant speed.  

This too is a function of inertia-governed "natural" orientation of the rotor. During initial 
acceleration, as previously described, the rotor will follow an SCL path based on gravity-
constrained journals up to the first system critical speed, and based on mass axis orientation at 



higher speeds. In the case of an assembled rotor train with rotor(s) bowed or with angularly 
misaligned couplings, there is an additional factor of torque-driven self-straightening. During 
deceleration without torque, the rotor will maintain the "static" stability orientation governed by 
its mass-axis for nearly all of the total speed range while decelerating back to the state of rest. 
This makes the hysteresis observed between the SCL path from the state of rest to running speed 
and back to a state of rest a good indication of the presence of unresolved mass eccentricity in an 
individual rotor or assembled rotor train. The magnitude of hysteresis observed in the SCL path 
is usually proportional to the magnitude of rotor mass eccentricity providing an important 
diagnostic clue to the source of observed rotor vibration. 

2. Vibration in an assembled and coupled rotor train: 

When a rotor is assembled on bearings in operation in the field and coupled to other rotors of 
different size and mass, it is important to consider the effect of the inertia of adjacent rotors, as 
well as eccentricity induced by misalignment or operational changes in the alignment of bearings 
and couplings. These induced rotor-train eccentricities can create the same dynamic behavior and 
altered "natural rotation" tendency as described for distributed mass eccentricities on individual 
rotors above the first system critical speed range, only now with reference to the mean mass axis 
of the complete rotor train (across rigid couplings). For each individual rotor in the rotor train, 
the Z-axis of its own inertial reference frame, representing the rotor's static stability orientation 
in its bearings when balanced solo in a balancing machine, can also be disturbed in the field 
when the respective mass axes across coupled rotors are radially offset or become angularly 
misaligned at the couplings. This misalignment can be caused statically by defective couplings 
exceeding design machining tolerances or by horizontal misalignment in bearing position. 
Misalignment can be caused operationally by thermal rise of individual bearings (pedestals or 
supports) or horizontal looseness, rotors bowing in operation, asymmetric radial pressures in 
seals, and asymmetric torque from axial operating media mass flow.  

In a multi-rotor train, the rotor with the largest mass and inertia will act to govern and influence 
the "static" stability orientation of other coupled rotors with less mass and inertia. This is most 
often evident in the "forced" SCL path of outboard journals of a lighter-weight rotor in a rotor 
train with some angular coupling misalignment, and is seen especially when the machine is 
operating above the lowest system fundamental harmonic resonance frequency of the rotor train, 
above the speed at which 180 degrees of phase shift was reached.  

The associated observed “vibration” arises when the intended alignment of the lighter rotor is 
pushed and skewed by and based on the operating alignment of the heavier rotor, seen as SCL 
motion at the outboard end of the lighter rotor, representing the shift of "static" 
position/orientation of that rotor's mass axis. If the outboard end of the lighter rotor has sufficient 
bearing clearance to allow its "static" stability axis into its altered and skewed "natural" inertia-
governed orientation, vibration can be exhibited primarily as kinetic displacement in the form of 
unconstrained conical whirling of the outboard journal. If bearing position or bearing clearance 
does not allow this inertia-driven reorientation in space and instead acts as a constraint against it, 
then kinetic displacement may be low but the resulting seismic vibration of the bearing/pedestal 
may be high, to the extent that the resultant forces are not otherwise absorbed by rotor shaft 
bending, depending on the rotor's flexibility and bearing damping. (If rotor stiffness is higher 
than oil film stiffness, the bearing will be wiped.) 



Additionally, drive torque further creates an inertial self-straightening of any angular 
misalignment in the rotor train. The resultant "static" orientation of the rotors during this self-
straightening is generally governed by the existing installed orientation of the heaviest rotor in 
the rotor train, with vibration similarly arising from constraint forces applied against the rotor by 
any outboard bearing if misalignment is present. While at rated operating speed, the amount of 
force in the system to drive this vibration is further proportional to MW load and the correlated 
higher drive torque on the rotor train. This misalignment-caused self-straightening is the cause of 
many load-proportional increases in vibration, as well as the straight-line SCL shifts sometimes 
observed while increasing or cycling unit MW load.  

Note again, the previous descriptions apply primarily when the assembled rotor train is operating 
above the speed of the free fundamental harmonic resonance frequency of the rotor with the 
largest mass. At that speed, the momentum of that rotor becomes sufficiently large to govern the 
operating orientation of the entire rotor train and displace the initial forced gravity-controlled 
“static” stability axis orientation. 

3. Rotor natural resonance in free space vs. system critical speed: 

It is important to recognize the differences between the "resonant response" or harmonic 
response of a rotor itself, and the "system critical speed response". As a continuous body 
supported at two ends in bearings, any rotor has an internal inherent natural resonance, appearing 
only under excitation as a modal response along the Z-axis at the fundamental resonance 
frequency. As a free body, the fundamental harmonic resonance frequency of the rotor can get 
excited with any applied sufficient external force perpendicular to the rotor’s longitudinal axis, 
and will react with a modal response motion in the direction of the applied force (e.g. beam 
impact test of an unconstrained rotor in free space). As a static, non-rotating object, constrained 
by gravity at supports with finite distance L between supports, the resonant response is true 
harmonic oscillating planar "vibration" at the rotor's inherent fundamental natural resonance 
frequency, with the rotor experiencing true internal bending oscillation within its modal response 
shape. Resulting response modes are numbered according to the number of observed spatial half 
waves within the span between the rotor constraints.  

The terms “resonant response” or “response frequency” are often arbitrarily used to refer to 
either a time or spatial domain, and this can create much confusion when defining the attributes 
of “harmonic resonant response” and “system critical speed response”. In the spatial domain, 
resonant response can relate to the wavelength as the physical distance between peaks of the 
shape of the modal response wave, while in the time domain it relates to the period or cycles per 
second (Hz) in which that modal response is oscillating. In oscillating harmonic response, the 
wavelength and period are inversely proportional. If the spatial wavelength is reduced by half, 
the period (or response frequency in time) will be twice as fast, or be at the 2nd harmonic of the 
fundamental modal response.  

In a rotor, one must distinguish between the “free” resonant oscillating response and the rotating 
rotor-bearing system response. Both are commonly modeled or represented as being 
conceptually interchangeable, defaulting to a model of all response as linear oscillation (under 
questionable assumptions of equivalence of a linear mass-spring-damper model to a rotating 
rotor system). The inherent “free”, natural, non-rotating resonance will act in this way, as a 
guitar string in planar oscillation. However, a continuous rotating rotor in a rotor-bearing system 



requires a reactive centrifugal force to initiate any kind of bending/deflection, and this force 
originates in the presence of some unbalance or mass eccentricity in combination with some 
physical constraint preventing "natural" rotation about the rotor’s true center of mass axis. This 
centrifugal force on the rotating rotor does not create a planar, harmonic oscillating "vibration", 
but rather a constant elastically deflected "static bow", while the rotor itself is synchronously 
rotating and laterally precessing in orbital motion while remaining essentially rigid.  

Both the “first” and “second” system critical speed response of a rotating rotor are effectively 
rigid modes of the rotor itself, and with a true oscillatory linear vibration occurring only in the 
bearing supports, as a counter-reaction to the reactive centrifugal forces generated in the rotor 
due to forced non-centroidal rotation. The rotor-bearing system reacts in a manner somewhat 
analogous to the true inherent rotor modal responses, with a lateral motion at the first system 
critical speed and a pivoting/rocking motion at super-critical speeds (after switching the 
"observer" reference frame to the mass axis), while the respective frequencies of these responses 
(in time domain) are dependent on the bearing and support stiffness of the system. The bearing 
stiffness governs the ability of an eccentric rotor to shift its mode of rotation from a forced non-
centroidal rotation to a self-aligned "natural" centroidal rotation about its mean mass axis 
constrained at the rotor COM in space. As examples, a vertical rotor (zero system stiffness) 
reverts to "natural" centroidal rotation immediately after being accelerated, while a rotor on a 
horizontal soft-bearing balancing machine can reach this state at ~100 rpm or less, while the 
same rotor on a completely rigid-bearing machine (such as ball bearings on firm supports with 
very high stiffness, with journals effectively “clamped”) would not achieve this "natural" rotation 
until reaching extremely high speeds, above practical operating speed of the rotor, if ever. 

When looking at the “system critical speed response”, it is central to recognize the presence of 
the inertial constraint at the rotor COM that develops after the first system critical speed region 
when entering a rigid rocking mode, created due to the rotation of an axially-asymmetric 
eccentric rotor self-centering about its true mass axis. This midpoint constraint effectively 
reduces the spatial wavelength of the “free rotor” resonant response by half, and can initiate a 
resonant response at a frequency of the 2nd harmonic, provided an excitation source is present 
upon reaching the necessary rotation frequency, generally in the form of centrifugal forces from 
residual eccentric mass. 

Another way of presenting the “free” rotor response at harmonic and super-harmonic frequency 
can be considered via an analogy with a resonating guitar string. This is analogous to (but not 
quite physically representative of) the rotor system response up to the peak of the first system 
critical speed (before the change in rotation reference axis) versus at super-critical speeds. In a 
“plucked” guitar string of length L and stiffness k constrained at each end, there is linear 
oscillation in the fundamental mode shape at the first inherent harmonic resonant response 
frequency, and this response is spatially a half-wave. (For string length L, the spatial wavelength 
of the full wave of the response would be 2L.) If now another constraint is added (a node point) 
at the guitar string’s midpoint, such as pressing on the fret, the string will now oscillate in a full 
wave, comprising two half-waves out of phase, one on each string half, and the oscillation period 
(in Hz) of this response occurs at the 2nd harmonic (2x) of the fundamental natural frequency. 
The full spatial wavelength of the response is now equal to the length L of the string, and each 
half, being constrained at the midpoint and one end, acts self-similar (as a half-wave) to the 
fundamental modal response.  



4. Rotating machinery design speed criteria: resonance and “critical speed”:  
 
In order to design a rotating machine for maximum efficiency, and to preserve rotor stability in 
hydrodynamic bearings in operation at any speed, it is necessary to consider rotor dynamic 
behavior for cases of increased inherent rotor eccentricity. This could arise from a developed 
shaft bow, or induced in the assembly of multiple rotors by misalignment of rotors’ mass axes, or 
by the action of unsteady pulsating torque from operating medium flow, or rubs. The inherent 
internal fundamental harmonic "resonant response" frequency of the independent rotor itself in 
free space (denoted as ω here for “free rotor” resonance) is well known as a function of its 
internal stiffness and internal mass as shown in Equation (1). 

 
(1) 

 
Operation at a speed above 2x the fundamental harmonic frequency of the rotor alone (not 
system) can excite the rotor’s internal modal response, and should be used as a design limit of 
operating speed. Machine design should also focus on the ratio of rotor stiffness to support 
stiffness. If support stiffness is lower than rotor stiffness, then the rotor will pass through the 
fundamental system critical speed region while remaining “rigid”, and will be able to self-center 
to “natural” rotation about its mass axis, and correspondingly re-orient its operating alignment in 
its bearings. If the bearing/support stiffness is greater than rotor stiffness, then the rotor will be 
prevented from self-centering to rotation about its mass axis as the journals will be effectively 
“clamped”, and centrifugal force and rotor deflection will grow with the square of speed, until 
potentially reaching a point of destruction of the machine. 
 
If the rotor is operated at a rotational speed (frequency) greater than twice the free rotor’s 
inherent natural resonant response oscillation frequency, then the rotor can itself “vibrate” in a 
purely internal resonant response (or first internal flexural mode, in a “W” shape). The first and 
second system modes are “rigid modes” of the rotor which are governed by the bearing/support 
stiffness as part of the “system criticals”. For this third mode, the modal response is integral to 
the rotor body itself, since nodal points are now within the rotor body between the bearing 
constraints, and the rotor resonant frequency and response is not controlled by the bearings. 
Additionally, the inertial midplane constraint at the rotor COM no longer has an effect once the 
rotor becomes internally “flexible”, as it is only acts within the rotor rigid mode above the first 
system critical speed. Such a response can be reduced by a modal balance weight distribution, 
but not prevented, with the best solution in such situations being to increase the rotor stiffness by 
design to prevent reaching this condition. One such solution is to increase rotor diameter and/or 
shorten the rotor effective length (L) between bearing constraints (e.g. Kaybob compressor). [14] 
 
As an attempt to summarize the design criteria to avoid instability and excessive vibration and 
forces, the following “proportionality relation” is presented in Figure 4. The “system critical 

speed”, Ωsyscrit is in time domain (Hz or rpm or rad/sec), while the right side shows the 
corresponding formula in “time units” but while incorporating the correction factor for the effect 
of spatial wavelength. Analogous to pressing the midpoint of a guitar string, upon reaching (and 
passing) the system critical speed peak (90° phase), the rotor COM becomes a constraint in space 
in the rocking/pivot mode, causing each half of the rotor to react in a manner of a 2nd harmonic 
of the “free unconstrained” rotor fundamental modal response (itself a half-wave, in which the 
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determines the system critical speed relative to the independent constrained rotor fundamental 
resonance frequency, and dictates whether the rotor has achieved “natural” rotation about its 
mass axis with an inertial constraint at the rotor’s COM. If the rotor’s internal resonance 
frequency is less than the system resonance frequency, then it will respond in a half-wave (total 
wavelength 2L) at its own independent resonance frequency, and may reach very high and 
damaging bending deflection amplitude. If the rotor’s internal fundamental resonance frequency 
is higher than the system fundamental resonance frequency, then it will switch to “natural” 
rotation at a lower speed than its own independent resonant response frequency, and enter a 
“rigid rocking mode”, with a response within in a full spatial wavelength of L.  
 
When operating at a speed greater than 2x the fundamental natural resonant frequency of the free 
rotor, the internal flexural mode (“W”-shape response) can be excited. In this mode, the 
operating stability axis no longer passes through the COMs of modal elements as in the two rigid 
modes. The rotor orientation reverts again to the journal axis (but as an inertial stability axis), but 
now with the modal masses internally removed/deflected from this axis, and the residual 
centrifugal forces from residual eccentric mass on each half of the rotor will drive increased 
bending deflection and also produce a synchronous cyclic force. This in turn can provide 
excitation to induce a resonant response at the fundamental harmonic frequency of the free rotor, 
which then appears as a subsynchronous whirl response at that fundamental response frequency. 
Therefore, a rotor system design should consider the interrelation between the operating rotation 
speed of the system and the inherent fundamental natural resonance frequency of the rotor alone 
in a free state or constrained state. The rotor/bearing system should maintain a condition where 
the maximum operating speed is limited to a rotation speed equal or less than 2x the rotor’s 
independent fundamental harmonic resonance frequency in free space, shown in Equation (2) to 
prevent creating instability and uncontrolled rotor vibration in the rotor’s first flexural mode.  
 

 (2) 
 
For design purposes, the bearing plus support stiffness must be such that the system critical 
speed frequency is below the rotor's own first natural resonance frequency, such that the rotor is 
able to self-align to its mass axis during acceleration through the first system critical speed 
during machine operation. This requires soft enough bearings and/or supports beneath the 
bearings. If the bearing/support stiffness is too high, and the rotor reaches its own natural 
resonance frequency while still "clamped" in the bearings, the deflection arising from centrifugal 
force (as a reaction force against the support constraints) will grow exponentially and 
uncontrolled without the rotor being able to “flip” to its natural rotation about its center of mass 
axis, and the result is high vibration or rotor destruction. In general, it is nearly impossible to 
optimize bearings for a machine in which the operating speed exceeds 2x the natural resonance 
of the independent rotor in a free state, since vibration instability forces then arise from within 
the rotor, independent of the bearings, and the bearings can only aim to absorb the resulting 
forces, not control them.  
 
One common solution when such symptoms are observed on high speed rotating machines, for 
which the ratio of mass (inertia) versus power density is much smaller than on the large turbo 
machinery discussed in this paper, is to incorporate a squeeze film damper bearing or magnetic 
bearings. However, contrary to the common assumption that its effectiveness is from adding 



increased damping, its real success is due to its reduced stiffness and its ability to allow the rotor 
to align to its "natural" rotation orientation according to its mass axis. Adding a soft support 
under a bearing will create a similar effect, bringing the combined stiffness below the 
fundamental natural resonance frequency of the free rotor. When vibration and stability problems 
are seen, it is not necessarily because of an improper bearing design for that rotor, but unsuitable 
rotor stiffness for that system stiffness.  
 
5. Considerations related to rotor balancing: 
 
Balancing rotors in horizontal machines should be the process of aligning the rotor’s net 
principal inertia axis (rotor body mass axis) to coincide with the rotor’s gravity-constrained axis 
of rotation (journal axis) when the rotor is rotating as a rigid body. This correlates conceptually 
to directly reducing those forces underlying the observed response motion by creating symmetry 
about the journal axis, versus reducing only the dynamic response motions that the forces may 
cause without regard to ensuring symmetry (such as placing a couple to “bend back” the 
responses at the rotor endplanes) [5]. (This is a common practice in field balancing, but 
successful only on machines with fairly flexible rotors, and when rotors are designed as fairly 
rigid, such field balancing is not recommended.) The goal is akin to balancing/compensating 
measured rotor runout directly as a goal of restoring inherent symmetry, as opposed to reducing 
the eventual dynamic responses caused by this runout when at higher rotation speeds.  
 
This is sometimes phrased as "balancing rigid modes first" [2], and only subsequently balancing 
residual modal responses. Since rotors are coupled (and constrained) symmetrically about their 
journal axis, and since rotors are intended by design to spin symmetrically about their journal 
centers, the optimal balancing approach should be to view this journal-axis rotation and 
alignment orientation as the basis for all balancing, and displacements should be minimized 
relative to this journal axis of the rotor. When this is achieved, the eccentric mass axis and 
journal axis are coincident (approximately, to the best practical extent possible), and the rotor 
maintains "natural" centroidal rotation about its journal centers through the full speed range, and 
the rotor remains balanced at all speeds and in all reference frames.  
 
In order to make such a balancing concept as a technological process fully successful in practice, 
it must be performed at a rotating speed below the peak of the rotor/bearing first system critical 
speed, while the rotor is still behaving as a “rigid” body and before it self-aligns its rotation 
center to its mean mass axis. This can be achieved by utilizing the "Pseudo-High Speed 
Balancing" method which is based on the observed reaction forces [3, 4], or by the "Quasi-High 
Speed Balancing" method in 2N+1 balancing planes, which is based on the observed reaction 
motions or displacements [5]. For smaller, high-speed rotors with too small of tolerances, or in 
cases where pure balancing is not practical, the alternative is to create a softer support structure 
to allow the rotor to self-align to its inherent mass axis without constraining this self-orientation 
in its bearings.  

Balancing should generally be done with placement of correction weights simultaneously in a 
minimum of three axially predetermined balancing planes distributed proportionally to resolve 
the first system critical speed response, i.e. at the total rotor center of mass, and at the center of 
mass of the two modal elements of the fundamental harmonic mode placed approximately in the 
so-called quarter planes, with weight amounts corresponding to the axial distribution of eccentric 



masses. [5] The end planes typically utilized for a “rigid second mode” should be utilized for 
refinement balancing using a modal “S” weight configuration (e.g. dealing with generators with 
eccentric retaining rings or fan hubs). The resultant sum of radial forces and axial moments 
produced by the added weights (with the rotor in a circular motion) will create a virtual dynamic 
mass axis that should as close as possible mirror the eccentricity of the inherent mass axis, and 
effectively bring it to within the allowable eccentricity as per ISO 1940-1 [1]. The geometric sum 
of the two mass axes will result in vanishing of synchronous cyclic reaction forces and 
displacements at the points of constraints (journals) in operation. The principle of dividing of 
rotor into modal elements and associated weight placement is shown in Figure 5. 
 

 
 
Figure 5. Graphical presentation of division of rotor modal elements relative to modal response, 
and resulting weight placements in 2N+1 balancing planes. 

Once the first critical response is resolved, if vibration amplitudes increase proportionally with 
increasing speed above the system fundamental harmonic frequency range, or at operating speed, 
that would indicate that the axial weight distribution should be further optimized. During the 
balancing process going back to the sub-harmonic frequency range, this can be done using a pair 
of trial weights per modal element, following the procedures of any balancing method by 
influence coefficients to fine-tune the axial distribution. However, when refining balancing at 
operating speed, only modal V or S weight placements must be used, chosen depending on the 
phase relation from sensors in the same circumferential location, so as not to disturb the radial 
symmetry gained from the first critical speed solution. If the axial distribution is correct to mirror 
the distribution of the rotor’s inherent mass eccentricity, no “second critical” response should be 
seen, nor any responses at higher speeds with the machine’s operating speed range.  

6. Conclusion: 

Inertia and momentum-governed behavior of a continuous rotor and a rotor’s tendency toward 
“natural rotation” plays an important role in diagnosing the root cause of rotor vibration 
problems, and in identifying effective solutions to eliminate undesirable vibration. One must also 
consider these factors to provide the best balancing results of continuous rotors on balancing 
machines. This requires a more complex view the real forces and motions in rotating machinery 
as an open system [11], with recognition of system symmetry with relation to conservation laws 
[12]. Recognizing the real forces and motions underlying what is perceived as rotor vibration in 
real operating machines provides important guidelines to rotor-bearing system design, and is 



integral to optimizing rotor balancing procedures. Furthermore, this understanding is essential to 
reliably and effectively resolve distributed mass eccentricity on large flexible rotors that operate 
above their first system critical speed. Rotor balancing should be performed at or up to the “first 
system critical speed”, and should not be only considered as reacting to and “bending back” the 
specific mode shape deflection at a given speed, but rather should be compensating the mass axis 
and restoring moment-free symmetry about the journal axis, with the benefit that the rotor will 
no longer exhibit modal deflections at any critical speeds.  

The primary discord in balancing results between standard balancing methods and the Quasi-
High Speed Balancing Method developed by the author [6] arises from the fact that standard 
balancing methods do not consider the switch of axis of the center of rotation, and the 
corresponding change of constraints which occur when a rotor in a gravitational environment is 
accelerated through the system fundamental harmonic resonance frequency range. Widely used 
standard balancing methods work great for rotors with high power density per rotor mass and 
with minor mass unbalances which do not appreciably change rotor mass axis eccentricity 
relative to rotating axis, and where residual unbalance forces are absorbed by the bearings as 
passive device. The advantage of the method developed by the author [6] is that it can deal 
equally as well as standard balancing methods with rotors with minor unbalances, while 
providing a very real advantage when balancing large rigid or flexible turbine and generator 
rotors, and specifically those rotors with bows and “significant” mass axis eccentricities. 
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